Textbook: Topology 2e, Munkres
這是我自己讀拓樸學的筆記,我自己覺得整理得可以作為參考書了 \o\。
原書中每一章節會介紹一個主題,一個定理接一個定理證,可是我筆記時綜整一個章節的性質(我認為這些要叫 propositions/properties比較恰當)寫在一起,證明後附,因為拓樸學的 prop 很多都是定義寫出來兜一兜就會對的,把注意放在證明內容其實有點失焦,重要的是要熟知什麼樣的空間有什麼性質。
承上,最後有個連結 Review of the Basis
考慮19個「拓樸空間可以有的性質」,對每個性質 回答 20 個問題,
共 380 個小題之中,只有兩題仍是 open problem 作不出來。
真正的算過一遍,就對一般拓樸自我感覺良好通透! 可以去試試看
- Notes
1 Topological Spaces
basis/subbasis
2 Fundamental Topologies
order topology
dictionary order
product topology
projection
subspace topology
convex
ordered square
3 Basic Point Set Topology
closed set/closure/interior/nbh/boundary/limit point
Kuratowski's Closure Complement Problem
Hausdorff space
T1-axiom
4 Continuous Functions
Equivalent definitions
Constructions
local formulation
pasting lemma
homeomorphism
local finite
5 Infinite Product Topologies
box/product topology
6 Metric spaces
metrization theorems
uniform metric/topology
$l^2$ topology
continuity on metric spaces
convergent sequence definition
sequence lemma
uniform convergent
uniform limit theorem
7 Quotient topology
quotient map/topology/space
continuous functions out of quotient space
- Notes
8 connectness
connectness
totally disconnected
$\mathbf{R}$ 上 connected spaces
linear continuum
Intermediate Value Theorem
path connectness
$n$th root function
Long Line
minimal uncountable well-ordered set
local (path) connectness
quasicomponent
9 compactness
compactness
finite intersection property
graph of a function
perfect map
$\mathbf{R}^n$ 上 compact spaces
Maximum/Minimum Value Theorem
Lebesgue Number Lemma
Uniform Continuous Theorem
Cantor set
limit point compactness(Bolzano-Weierstrauss property)
countable compactness
sequential compactness
Isometry
Local compactness
quoteint map (revised)
10 Countability Axioms
1st countability
2nd countability
Lindelof spaces
separable spaces
- Notes
11 Separation Axioms
regular spaces (T3)
normal spaces (T4)
completely normal spaces (T5)
perfectly normal spaces (T6)
Urysohn Lemma
Completely regularity
Urysohn Metrization Theorem
Imbedding theorem
local metrizability
Tietze Extension Theorem
Universal Extension Property
Coherent topology
12 Manifolds
partition of unity
finite partition of unity existence theorem
imbedding theorem for manifolds
Shrinking lemma
4S Review of the basics
13 Tychonoff Theorem
Tychonoff Theorem
compactification
induced compactification
Stone-Cech compactification
Review of the Basics
|
沒有留言:
張貼留言