2010年4月3日

[Notes] General Topology

Textbook: Topology 2e, Munkres

這是我自己讀拓樸學的筆記,我自己覺得整理得可以作為參考書了 \o\。

原書中每一章節會介紹一個主題,一個定理接一個定理證,可是我筆記時綜整一個章節的性質(我認為這些要叫 propositions/properties比較恰當)寫在一起,證明後附,因為拓樸學的 prop 很多都是定義寫出來兜一兜就會對的,把注意放在證明內容其實有點失焦,重要的是要熟知什麼樣的空間有什麼性質。

承上,最後有個連結 Review of the Basis
考慮19個「拓樸空間可以有的性質」,對每個性質 回答 20 個問題,
共 380 個小題之中,只有兩題仍是 open problem 作不出來。
真正的算過一遍,就對一般拓樸自我感覺良好通透! 可以去試試看


  • Notes
    1 Topological Spaces
    basis/subbasis

    2 Fundamental Topologies
    order topology
    dictionary order
    product topology
    projection
    subspace topology
    convex
    ordered square

    3 Basic Point Set Topology
    closed set/closure/interior/nbh/boundary/limit point
    Kuratowski's Closure Complement Problem
    Hausdorff space
    T1-axiom

    4 Continuous Functions
    Equivalent definitions
    Constructions
    local formulation
    pasting lemma
    homeomorphism
    local finite

    5 Infinite Product Topologies
    box/product topology

    6 Metric spaces
    metrization theorems
    uniform metric/topology
    $l^2$ topology
    continuity on metric spaces
    convergent sequence definition
    sequence lemma
    uniform convergent
    uniform limit theorem

    7 Quotient topology
    quotient map/topology/space
    continuous functions out of quotient space
     
  • Notes

    8 connectness
    connectness
    totally disconnected
    $\mathbf{R}$ 上 connected spaces
    linear continuum
    Intermediate Value Theorem
    path connectness
    $n$th root function
    Long Line
    minimal uncountable well-ordered set
    local (path) connectness
    quasicomponent

    9 compactness
    compactness
    finite intersection property
    graph of a function
    perfect map
    $\mathbf{R}^n$ 上 compact spaces
    Maximum/Minimum Value Theorem
    Lebesgue Number Lemma
    Uniform Continuous Theorem
    Cantor set
    limit point compactness(Bolzano-Weierstrauss property)
    countable compactness
    sequential compactness
    Isometry
    Local compactness
    quoteint map (revised)

    10 Countability Axioms
    1st countability
    2nd countability
    Lindelof spaces
    separable spaces
     
  • Notes

    11 Separation Axioms
    regular spaces (T3)
    normal spaces (T4)
    completely normal spaces (T5)
    perfectly normal spaces (T6)
    Urysohn Lemma
    Completely regularity
    Urysohn Metrization Theorem
    Imbedding theorem
    local metrizability
    Tietze Extension Theorem
    Universal Extension Property
    Coherent topology

    12 Manifolds
    partition of unity
    finite partition of unity existence theorem
    imbedding theorem for manifolds
    Shrinking lemma

    4S Review of the basics

    13 Tychonoff Theorem
    Tychonoff Theorem
    compactification
    induced compactification
    Stone-Cech compactification

    Review of the Basics

沒有留言:

張貼留言