之前王振男有教過, 最近需要用到, 所以我再整理後 把他打出來:
我們著眼於以下四種收斂方式:
AU: $f_n \to f$ almost uniformly
AE: $f_n \to f$ almost everywhere
M: $f_n \to f$ in measure
$L^1$: $f_n \to f$ in mean
一、Arbitrary measure spaces
$\begin{array}{ccc}\text{AU}&\rightarrow&\text{AE}\\ \downarrow \\ \text{M}&\leftarrow&L^1\end{array}$
1. 證成關係都只是 checking definitions
2. 反例
AU $\not\to$ $L^1$ : $1/n \chi_{(0,n)}$
AE $\not\to$ M : $\chi_{(n,n+1)}$
M $\not\to$ AE : Typewritter seq
M $\not\to$ $L^1$ : $n\chi_{[1/n,2/n]}$
二、Finite measure spaces $(X,M,\mu)$
If $\mu(X)<\infty$, then
$\begin{array}{ccc}\text{AU}&\leftrightarrow&\text{AE}\\ \downarrow \\ \text{M}&\leftarrow&L^1\end{array}$
3. AE $\to$ AU 為 Egoroff 定理
三、Dominated Cases
If $|f_n|\leq g$ for some $g$ in $L^1$, then
$\begin{array}{ccc}\text{AU}&\leftrightarrow&\text{AE}\\ \downarrow \\ \text{M}&\leftrightarrow&L^1\end{array}$
4. AE $\to$ AU 為 modified Egoroff Theorem
5. M $\to$ $L^1$ 為 LDCT wrt conv. in measure
四、Existence of convergent subsequence
以 M $\overset{s}{\to}$AU 表
"若 $f_n \to f$ in measure, 則 $f_n$ 有 subseq $g_n \to f$ almost uniformly ", 以此類推
證明先證 $f_n$ 有 subseq $g_n \to g$ almost uniformly
因此 $g_n \to g$ in measure 且 $g_n \to f$ in measure
便可說 $g = h$ a.e. 得到 $g_n \to f$ almost uniformly
由一、的結果可推得以下結果:
1. M $\overset{s}{\to}$ AU
2. M $\overset{s}{\to}$ AE
3. $L^1$ $\overset{s}{\to}$ AU
4. $L^1$ $\overset{s}{\to}$ AE
1xbet korean: legalbet
回覆刪除1xbet korean: legalbet.co.kr. Title 샌즈카지노 of New 1xbet korean Member 메리트 카지노 - $2,000,000. Bonus amount up to $1,000. Bonus amount up to $100. Bonus amount up to $1000.